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Z. Riečanová proved that every D-lattice is a set-theoretical union of MV-algebras.
These MV-algebras are blocks in the D-lattice. There is a dual question: How can we
construct a D-poset from a given collection of MV-algebras. To solve this problem we
use the “pasting” technique. We define an admissible system of MV-algebras and we
prove that the pasting of this system is a D-poset.
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1. INTRODUCTION

In 1992, in the study of axiomatic systems of fuzzy sets, Kˆopka (1992) defined
a new algebraic structure, a so-calleddifference poset(in short aD-poset) of fuzzy
sets, where a difference of comparable fuzzy sets was a primary operation. A gen-
eralization of a D-poset of fuzzy sets to an abstract partially ordered set, where a
primary operation is a partially defined difference, yields a very general and, at the
same time, a very simple structure—adifference poset(a D-poset). An alternative
structure to a D-poset based on a partial binary sum operation is aneffect alge-
bra (Foulis and Bennett, 1994) (orunsharp orthoalgebra(Giuntini and Greuling,
1989)). Although these frameworks are algebraically equivalent, they originated in
completely different starting points and they have their original systems of axioms.
The similar situation can be seen in the theory of infinite-valued (Lukasiewicz) log-
ics, where Wajsberg algebras (Fontet al., 1984) and MV-algebras (Chang, 1957)
are the same structures. In the difference posets theory, an MV-algebra is charac-
terized as a D-lattice (lattice ordered D-poset) of pairwise compatible elements.
The results of a special direction in MV-algebras and D-posets research can be
found in Dvurečenskij and Pulmannov´a (2000).

Riečanová (2000) proved that every D-lattice is a set-theoretical union of
maximal mutually compatible sub-D-lattices (i.e., maximal sub-MV-algebras),
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called blocks. Jenˇca (2001) generalized this assertion for homogeneous effect
algebras.

Now, a natural dual question arises: How can we construct a D-poset from
a given collection of MV-algebras? To solve this problem we use the “pasting”
technique. A method of construction of quantum logics making use of the pasting
of Boolean algebras was originally suggested by Greechie (1971). In the present
paper, we give a generalization of this method.

2. BASIC DEFINITIONS AND FACTS

Let P be a bounded partially ordered set with the least element 0P and the
greatest one 1P . Letª be a partial binary difference operation onP such that there
existsbª a in P if and only if a ≤ b and the following axioms hold.

(D1) aª 0P = a for anya ∈ P.
(D2) a ≤ b ≤ c impliescª b ≤ cª a and (cª a)ª (cª b) = bª a.

The structure (P,≤,ª, 0P , 1P ) is calleda difference poset(a D-poset). For
the simplicity of the notation, we shall writeP instead of (P, ≤, ª, 0P , 1P ). A
lattice-ordered D-poset is called aD-lattice.

For any elementa in a D-poset, the element 1P ª a is called theorthosupple-
mentof a and is denoted bya⊥. The unary operation⊥: a 7→ a⊥ is an involution
((a⊥)⊥ = a) and order reversing (a ≤ b impliesb⊥ ≤ a⊥).

A sum of orthogonal elements, denoted by⊕, is a dual partial binary operation
to a difference defined by the formula

a⊕ b := (a⊥ ª b)⊥ for a, b ∈ P, b ≤ a⊥.

Let F = {a1, . . . , an} be a finite sequence in a D-posetP. We define

a1⊕ · · · ⊕ an = (a1⊕ · · · ⊕ an−1)⊕ an,

for any n ≥ 3, supposing thata1⊕ · · · ⊕ an−1 and (a1⊕ · · · ⊕ an−1)⊕ an exist
in P. We say that a finite systemF = {a1, a2, . . . , an} of a D-posetP is ⊕−
orthogonal, if a1⊕ a2⊕ · · · ⊕ an exists inP and then we write

a1⊕ a2⊕ · · · ⊕ an =
n⊕

i=1

ai .

An arbitrary systemG of P is ⊕−orthogonal, if every finite subsystem ofG is
⊕−orthogonal.

Elementsa andb from a D-posetP arecompatible(a↔ b), if there exist
c, d ∈ P such thatc ≤ a ≤ d, c ≤ b ≤ d andd ª a = bª c.

If P is a D-lattice, thena↔ b if and only if (a ∨ b)ª a = bª (a ∧ b).
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Kôpka (1995) studied the compatibility in D-posets and defined aBoolean
D-poset.

A posetP with the least element 0P and the greatest element 1P is said to
be aBoolean D-posetif there exists a binary operation “−” on P satisfying the
following conditions.

(BD1) a− 0P = a for anya ∈ P.
(BD2) a− (a− b) = b− (b− a) for everya, b ∈ P.
(BD3) a, b ∈ P, a ≤ b impliesc− b ≤ c− a for anyc ∈ P.
(BD4) (a− b)− c = (a− c)− b for everya, b, c ∈ P.

Properties of Boolean D-posets were studied in Chovanec and Kˆopka (1997).
It was shown that a Boolean D-poset is a D-lattice of pairwise compatible elements
and vice versa. (We note that an orthomodular lattice of pairwise compatible
elements is a Boolean algebra.)

An MV-algebrais an algebra (A,+, ∗, 0, 1), whereA is a nonempty set, 0
and 1 are constant elements ofA,+ is a binary operation and∗ is a unary operation
satisfying the following axioms.

(MVA1) (a+ b) = (b+ a).
(MVA2) (a+ b)+ c = a+ (b+ c).
(MVA3) a+ 0= a.
(MVA4) a+ 1= 1.
(MVA5) (a∗)∗ = a.
(MVA6) 0∗ = 1.
(MVA7) a+ a∗ = 1.
(MVA8) (a∗ + b)∗ + b = (a+ b∗)∗ + a.

The lattice operations∨ and∧ are defined in any MV-algebra by

a ∨ b = (a∗ + b)∗ + b and a ∧ b = ((a+ b∗)∗ + b∗)∗.

We write a ≤ b, if a ∨ b = b. The relation≤ is a partial ordering onA and
0≤ a ≤ 1 for anya ∈ A. An MV-algebra is a distributive lattice with respect to
the operations∨ and∧.

We put

a− b = (a∗ + b)∗ for every a, b ∈ A.

Then an MV-algebraA becomes a Boolean D-poset.
Conversely, let (P,−, 0P , 1P ) be a Boolean D-poset. Let us put

a∗ = 1P − a for any a ∈ P,

and

a+ b = (a∗ − b)∗ for every a, b ∈ P.
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Then (P,+, ∗, 0P , 1P ) becomes an MV-algebra. Consequently, Boolean D-posets
are algebraically equivalent to MV-algebras. In the present paper, we shall use the
notion of an MV-algebra instead of a Boolean D-poset.

By aσ -completeD-poset we mean a D-posetP such that for any countable
sequence{an}∞n=1 of elements ofP the least upper bound

∨∞
n=1 an and the greatest

lower bound
∧∞

n=1 an exist inP.
For reader’s convenience we present some properties of aσ -complete MV-

algebraA. If {an}∞n=1 ⊂ A, then the following assertions are true for everyb ∈ A.

(i) b−∧∞n=1 an =
∨∞

n=1(b− an).
(ii) b−∨∞n=1 an =

∧∞
n=1(b− an).

(iii) (
∨∞

n=1 an)− b =∨∞n=1(an − b).
(iv) b∧ (

∨∞
n=1 an) =∨∞n=1(b∧ an).

(v) If ai ∧ aj = 0A for i 6= j , then the sequence{an}∞n=1 is ⊕–orthogonal
and

⊕∞
n=1 ai =

∨∞
n=1 an.

A nonzero elementa from a D-posetP is calledan atomif the inequality
b ≤ a entails eitherb = 0P or b = a. A D-posetP is said to beatomicif for any
nonzero elementb ∈ P there exists an atoma ∈ P such thata ≤ b.

3. MV-ALGEBRAS PASTING

Definition 1. LetP be a D-poset andN be a set of all nonnegative integers.

(1) An orthogonal multipleof an elementa ∈ P is defined recurrently as
follows.
(i) 0a := 0P .

(ii) 1a := a.
(iii) na := (n− 1)a⊕ a whenever (n− 1)a ≤ a⊥, n ≥ 2.

(2) The maximal nonnegative integern ∈ N such that an elementna exists
in P is called anisotropic indexof a and we denote itτ (a). If na exists
for every integern, thenτ (a) = ∞.

It is obvious that the equalityτ (0P ) = ∞ holds in every D-poset.

Lemma 2. Aσ -complete D-poset has no nonzero elements with infinite isotropic
index.

Proof: LetP be aσ -complete D-poset and let for somea > 0P beτ (a) = +∞.
Denoting bya1 = a, a2 = 2a, . . . , an= na, . . . , we putb= ∨∞n=1 an. Thena≤ b
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and

bª a =
( ∞∨

n=1

an

)
ª a =

∞∨
n=1

(an ª a)

= 0P ∨ a ∨ 2a ∨ · · · ∨ an−1 ∨ an ∨ · · · = b.

This is equivalent toa = 0P , which contradicts the assumptiona > 0P . ¤

We note that an MV-algebra is a Boolean algebra if and only if the isotropic
index of every nonzero element is equal to one.

LetA be an atomic MV-algebra. We shall denote by〈A〉 the set of all atoms
of A and by|A| the cardinality of a setA, whereA ⊂ 〈A〉.

Definition 3. Let S = {At : t ∈ T, T is an index set} be a system of atomic
σ -complete MV-algebras. LetA and B be finite sets of atoms such thatA ⊂
〈At 〉, B ⊂ 〈As〉 for t 6= s, and|A| = |B|. We say that the setsA andB areequiv-
alent with respect to isotropic indices, and writeA ∼τ B, if one of the following
conditions hold.

(1) A=∅ andB=∅.
(2) If a∈ A, then there existsb∈ B such thatτ (a)= τ (b), and moreover,

if a1, a2∈ A and a1 6=a2, then there exist atomsb1, b2∈ B such that
τ (a1)= τ (b1), τ (a2)= τ (b2) andb1 6= b2.

We remark that ifA∼τ B, then there exists a bijectionϕ from A onto B
defined as follows:ϕ(a)= b if and only if τ (a)= τ (b).

It is easily seen thatA∼τ B implies B∼τ A and, in addition, ifA, B, C
are three mutually different atomicσ -complete MV-algebras fromS such that
A⊂〈A〉, B⊂〈B〉, C⊂〈C〉, A∼τ B andB∼τ C, thenA∼τ C.

Definition 4. LetS ={At : t ∈ T}be a system of atomicσ -complete MV-algebras
and let the following conditions hold for arbitrary three MV-algebrasA, B, C
from S.

(1) If A⊂〈A〉, B⊂〈B〉 andA∼τ B, thenA \ A 6= ∅ and〈B〉 \ B 6= ∅. More-
over, if 〈A〉 \ A={a} or 〈B〉 \ B={b}, respectively, thenτ (a) > 1 and
τ (b) > 1.

(2) If A1, A2⊂〈A〉, A1∩ A2 = ∅, A1∪ A2=〈A〉, B⊂〈B〉, C⊂〈C〉 such
that A1∼τ B, A2∼τ C, then there exist nonempty setsB1 andC1 such
that B1⊂〈B〉 \ B, C1⊂〈C〉 \C andB1∼τ C1.

ThenS is said to be anadmissible systemof MV-algebras.
Now we define a relation∼ on the union

⋃
t∈T At of an admissible system

S of MV-algebras.
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Definition 5. Let {S =At : t ∈ T} be an admissible system of MV-algebras. For
every pair of MV-algebrasAt andAs we choice a pair of setsA andB of atoms
such thatA⊂〈At 〉, B⊂〈As〉, andA∼τ B.

(1) We define 0At ∼ 0As and 1At ∼ 1As wheneverA=∅ andB=∅.
(2) If x, y∈At , thenx∼ y if and only if x= y.
(3) If x ∈At , y∈As and A={a1, a2, . . . , an}, B={b1, b2, . . . , bn},

then x∼ y whenever x= ∨n
i=1 pi ai and y= ∨n

i=1 pi bi , where
pi ∈ {0, 1, 2,. . . , τ (ai )} for i = 1, 2,. . . , n.

(4) If x∼ y thenx⊥ ∼ y⊥.

Lemma 6. Let {S =At : t ∈ T} be an admissible system of MV-algebras. Then
0At ∼ 0As and1As ∼ 1At for arbitrary s, t ∈ T .

Proof: Let s, t ∈ T , A⊂〈At 〉 and B⊂〈As〉 such that A∼τ B and
A={a1, a2, . . . , an}, B={b1, b2, . . . , bn}. If we putpi = 0 for anyi = 1, 2,. . . , n,
then 0At =

∨n
i=1 0ai , 0As =

∨n
i=1 0bi and so 0At ∼ 0As. From (4) of Definition 5

we have immediately 1At ∼ 1As. ¤

Theorem 7. LetS ={At : t ∈ T} be an admissible system of MV-algebras. The
relation∼ is an equivalence relation on

⋃
t∈T At .

Proof: The reflexivity and symmetry are obvious. To prove the transitivity we
assume thatA, B, C ∈S are different MV-algebras andx ∈A, y∈B, z∈ C such
thatx∼ y andy∼ z. This follows that there exist setsA, B, C such thatA ⊂ 〈A〉,
B ⊂ 〈B〉, C ⊂ 〈C〉 andA∼τ B, B∼τ C. If A=∅, thenB=∅ and alsoC=∅. Then
eitherx= 0A or x= 1A. If x= 0A theny = 0B and as well asz= 0C , hencex ∼ z.
Similarly if x= 1A.

Now let A={a1, a2, . . . , an} 6= ∅. Then B={b1, b2, . . . , bn} 6= ∅ and
C={c1, c2, . . . , cn} 6= ∅. There are two possibilities: eitherx= ∨n

i=1 pi ai

and then y= ∨n
i=1 pi bi , or x= ∧n

i=1(pi ai )⊥ and then y= ∧n
i=1(pi bi )⊥,

where pi ∈ {0, 1, 2,. . . , τ (ai )} for i = 1, 2,. . . , n. In the first case necessarily
z= ∨n

i=1 pi ci , which gives thatx∼ z. Similarly it is in the second case. ¤

Theorem 8. Let A be an atomic σ -complete MV-algebra and
A={a1, a2, . . . , an} ⊂ 〈A〉. Let u, v be elements fromA such that v=∨n

i=1 qi ai ,
where0≤qi ≤ τ (ai ), i = 1, 2,. . . , n. Then u≤ v if and only if u=∨n

i=1 pi ai ,
where0≤ pi ≤qi for i = 1, 2,. . . , n.
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Proof: Let u≤ v. First observe that there exists no atoma ∈ 〈A〉 \ A such that
a≤ u. Indeed, if an atom a like this existed, then

a = a ∧ u ≤ a ∧ v = a ∧
( n∨

i=1

qi ai

)
=

n∨
i=1

a ∧ (qi ai ) = 0A.

Becauseu ∧ (τ (ai )ai ) ≤ τ (ai )ai , there existspi such that 0≤ pi ≤ τ (ai ), and
henceu ∧ (τ (ai )ai ) = pi ai .

We putα= ∨n
i=1 τ (ai )ai . Thenu≤ v≤α and consequently,

u = u ∧ α = u ∧
( n∨

i=1

τ (ai )ai

)
=

n∨
i=1

u ∧ (τ (ai )ai ) =
n∨

i=1

pi ai .

Suppose that there existspk such thatpk > qk for somek∈ {1, 2,. . . , n}. Then
pkak > qkak. On the other hand we have

pkak = (pkak) ∧ u ≤ (pkak) ∧ v = (pkak) ∧
(

n∨
i=1

qi ai

)

=
n∨

i=1

((pkak) ∧ (qi ai )) = (pkak) ∧ (qkak) = qkak,

which is contradiction with the assumptionpkak > qkak, therefore,pi ≤qi for all
i = 1, 2,. . . , n. ¤

Corollary 9. Let u=∧n
i=1(pi ai )⊥, 0≤ pi ≤ τ (ai ). Then u≤ v if and only if

v =∧n
i=1(qi ai )⊥, where0≤qi ≤ pi for i = 1, 2,. . . , n.

Theorem 10. Let S={At : t ∈ T} be an admissible system of MV-algebras and
A⊂〈At 〉 and B⊂〈As〉 such that A∼τ B. Let x, u, ∈At and y, v ∈As such that
x∼ y and u∼ v. The following assertions are true.

(1) u≤t x if and only if v≤s y, and moreover, xªt u∼ yªs v, where≤t ,
≤s are pratial orderings, andªt , ªs, are differences onAt and As,
respectively.

(2) u∨t x∼ v∨s y and u∧t x ∼ v ∧s y, where∨t (∨s) is the union and∧t (∧s)
is the meet onAt (As).

Proof: For simplicity of notation, we shall write≤ (ª, ∨, ∧) instead of≤t and
≤s (ªt andªs, ∨t and∨s, ∧t and∧s).

(1) Let〈At 〉= {a1, a2, . . . , am}be a set of all atoms ofAt andA={a1, a2, . . . ,
an}⊂ 〈At 〉, where n < m, and B={b1, b2, . . . , bn}⊂ 〈As〉. Put
α= ∨n

i=1 τ (ai )ai and β = ∨n
i=1 τ (bi )bi . It is visible that α∼β

andα∨α⊥ = ∨m
i=1 τ (ai )ai = 1At .
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There are only two possibilities: eitherx= ∨n
i=1 pi ai or

x= ∧n
i=1(pi ai )⊥. If x= ∨n

i=1 pi ai , theny= ∨n
i=1 pi bi . The inequality

u≤ x implies thatu= ∨n
i=1 qi ai , whereqi ≤ pi for i = 1, 2,. . . , n. Then

v= ∨n
i=1 qi bi ≤

∨n
i=1 pi bi = y.

Let us calculate

x ª u = x − u =
( n∨

i=1

pi ai

)
−
( n∨

j=1

qj aj

)

=
n∨

i=1

(
pi ai −

n∨
j=1

qj aj

)
=

n∨
i=1

n∧
j=1

(pi ai − qj aj )

=
n∨

i=1

(pi ai − q1a1) ∧ · · · ∧ (pi ai − qi ai ) ∧ · · · ∧ (pi ai − qnan)

=
n∨

i=1

(pi ai ) ∧ · · · ∧ ((pi − qi )ai ) ∧ · · · ∧ (pi ai ) =
n∨

i=1

(pi − qi )ai .

Likewise yª v =∨n
i=1(pi − qi )bi , consequently,xª u∼ yª v.

We note that if x= ∨n
i=1 pi ai and u= ∧n

i=1(qi ai )⊥, then
α⊥ ≤ u≤ x≤α, which givesα⊥ ≤α ∧ α⊥ = 0At , a contradiction.

Let x= ∧n
i=1(pi ai )⊥. Then y= ∧n

i=1(pi bi )⊥ and there are two
possibilities: eitheru =∧n

i=1(qi ai )⊥ or u= ∨n
i=1 qi ai . In the first case

in the inqualityu≤ x gives thatpi ≤qi for i = 1, 2,. . . , n. Then v =∧n
i=1(qi bi )⊥ ≤

∧n
i=1(pi bi )⊥ = y and

x ª u = u⊥ ª x⊥ =
( n∨

j=1

qj aj

)
ª
( n∨

i=1

pi ai

)
=

n∨
j=1

(qj − pj )aj .

In like manner we obtainyª v= ∨n
j=1(qj − pj )bj , which yields

xª u∼ yª v.
Now we assume thatx= ∧n

i=1(pi ai )⊥ andu= ∨n
i=1 qi ai . Then

n∨
i=1

qi ai = u = u ∧ α ≤ x ∧ α = x ∧
( n∨

i=1

τ (ai )ai

)
=

n∨
i=1

x ∧ τ (ai )ai

=
n∨

i=1

( n∨
j=1

(pj aj )
⊥
)
∧ τ (ai )ai =

n∨
i=1

(pi ai )
⊥ ∧ τ (ai )ai

=
n∨

i=1

(τ (ai )ai ª pi ai ) =
n∨

i=1

(τ (ai )ª pi )ai .
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Henceqi ≤ τ (ai )ª pi , which gives pi +qi ≤ τ (ai ) for i = 1, 2,. . . , n.
The inequalityu≤ x implies thatx⊥ ⊕ u exists inAt and

x⊥ ⊕ u =
( n∨

i=1

pi ai

)
⊕

n∨
i=1

qi ai =
( n⊕

i=1

pi ai

)
⊕
( n⊕

i=1

qi ai

)

=
n⊕

i=1

(pi + qi )ai =
( n∨

i=1

(pi + qi

)
ai .

Thenx ª u= (x⊥ ⊕ u)⊥ =∧n
i=1((pi + qi )ai )⊥.

On the other hand we havey≥ y ∧ β =∧n
i=1(τ (bi )ª pi )bi ≥∨n

i=1 qi bi = v and alsoyª v =∨n
i=1((pi + qi )bi )⊥, consequently (1) is

proved.
(2) There are four possibilities.

(i) Let x= ∨n
i=1 pi ai andu =∨n

i=1 qi ai . Then

x ∨ u =
( n∨

i=1

pi ai

)
∨
( n∨

i=1

qi ai

)
=

n∨
i=1

(pi ai ∨ qi ai )

=
n∨

i=1

(max{pi , qi })ai

and in the same manner we obtainy ∨ v =∨n
i=1(max{pi , qi })bi ,

which yieldsx ∨ u ∼ y ∨ v.
(ii) We note that (qa)⊥ ∨ pa= (min{q, τ (a)− p}a)⊥ for every atom

a fromAt , 0≤ p≤ τ (a), 0≤ q ≤ τ (a). Indeed,

(qa)⊥ ∨ pa = (τ (a)aª (τ (a)− q)a)⊥ ∨ pa

= ((τ (a)a)⊥ ⊕ (τ (a)− q)a) ∨ pa

= ((τ (a)a)⊥ ∨ (τ (a)− q)a) ∨ pa

= (τ (a)a)⊥ ∨ ((τ (a)− q)a ∨ pa)

= (τ (a)a)⊥ ∨max{τ (a)− q, p}a
= τ (a)a⊥ ⊕max{τ (a)− q, p}a
= (τ (a)aªmax{τ (a)− q, p}a)⊥

= (min{q, τ (a)− p}a)⊥.
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If x =∨n
i=1 pi ai andu =∧n

i=1(qi ai )⊥, then

u ∨ x =
n∧

i=1

(qi ai )
⊥ ∨

( n∨
j=1

pj aj

)
=

n∧
i=1

(
(qi ai )

⊥ ∨
( n∨

j=1

pj aj

))

=
n∧

i=1

( n∨
j=1

pj aj ∨ (qi ai )
⊥
)
=

n∧
i=1

(pi ai ∨ (qi ai )
⊥)

=
n∧

i=1

(min{qi , τ (ai )− pi }ai )
⊥.

Similarly v ∨ y= ∧n
i=1(min{qi , τ (bi )− pi }bi )⊥, so thatu ∨ x ∼

v ∨ y.
(iii) If x= ∧n

i=1(pi ai )⊥ and u= ∨n
i=1 qi ai , then x ∨ u=∧n

i=1
(min{pi , τ (ai )− qi }ai )⊥ and y ∨ v= ∧n

i=1(min{pi , τ (bi )−
qi }bi )⊥.

(iv) Finally, let x =∧n
i=1(pi ai )⊥ andu =∧n

i=1(qi ai )⊥. Then

x ∨ u = (x⊥ ∧ u⊥)⊥ =
(( n∨

i=1

pi ai

)
∧
( n∨

j=1

qj aj

))⊥

=
( n∨

i=1

(pi ai ∧ qi ai )

)⊥
=
( n∨

i=1

min{pi , qi }ai

)⊥

=
n∧

i=1

(min{pi , qi }ai )
⊥,

and by analogyy ∨ v =∧n
i=1(min{pi , qi }bi )⊥. With respect to (4)

of Definition 5, the proof of complete. ¤

Let x̄ be the equivalence class determined byx andP be the quotient set, i.e.

x̄ =
{

y ∈
⋃
t∈T

At : y ∼ x

}
and P =

{
x̄ : x ∈

⋃
t∈T

At

}
.

The setP is called anMV-algebras pasting.
If we denoteĀt ={x̄ : x ∈At }, thenP =⋃t∈T Āt . We prove that an MV-

algebras pastingP is a D-poset. To prove this, we first define a partial ordering
onP.

Definition 11. LetP be an MV-algebras pasting and̄x, ȳ∈P. Thenx̄ ≤ ȳ if and
only if there exist an MV-algebraAr and elementsu, v ∈Ar such thatu∈ x̄, v ∈ ȳ
andu≤r v.
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Theorem 12. The relation≤ is a partial ordering onP.

Proof: The reflexivity is visible.
Letx ∈At andy ∈ As such that̄x ≤ ȳ andȳ ≤ x̄. Then there are MV-algebras

Ar1, Ar2 for r1, r2∈ T , and elementsu1, v1, u2, v2 such thatu1, v1 ∈ Ar1 and
x∼ u1, v1∼ y, u1 ≤r1 v1 andu2, v2∈Ar2 andy ∼ u2, v2 ∼ x, u2 ≤r2 v2. On the
other hand we have thatu1 ∼ v2, v1 ∼ u2 and, considering Theorem 10, we obtain
thatv2 ≤r2 u2, which givesv2= u2 and hencēx= v̄2= ū2 = ȳ.

Now we prove the transitivity. Suppose thatx ∈ At , y ∈ As andz ∈ Ar such
that x̄ ≤ ȳ andȳ ≤ z̄. Then there exist MV-algebrasAr1 andAr2 and elementsu1,
v1 ∈ Ar1 andu2, v2 ∈ Ar2 such thatx ∼ u1, y ∼ v1, y ∼ v2, z∼ u2 andu1 ≤r1 v1

andv2 ≤r2 u2. Because ofv1 ∼ v2, there exist setsA andB such thatA ⊂ 〈Ar1〉,
B⊂〈Ar2〉 and A∼τ B. Let A={a1, a2, . . . , an} and B={b1, b2, . . . , bn}. There
are two possibilities: eitherv1 =

∨n
i=1 qi ai or v1 =

∧n
i=1(qi ai )⊥, where 0≤ qi ≤

τ (ai ) for i = 1, 2,. . . , n.
If v1=

∨n
i=1 qi ai , thenv2=

∨n
i=1 qi bi . The inequalityu1 ≤r1 v1 implies that

u1=
∨n

i=1 pi ai , where 0≤ pi ≤ qi for i = 1, 2,. . . , n. We putu= ∨n
i=1 pi bi .

Thenu ∈ Ar2 andu ∼ u1 ∼ x, u ≤r2 v2 andu2 ∼ z, which gives that̄x≤ z̄.
If v1=

∧n
i=1(qi ai )⊥ then v2=

∧n
i=1(qi bi )⊥. Using Corollary 9 we

obtain u2 =
∧n

i=1(pi bi )⊥, where 0≤ pi ≤ qi for i = 1, 2,. . . , n. Putting
u= ∧n

i=1(pi ai )⊥ we getu ∈ Ar1, u ∼ u2 ∼ z andu1≤r1 v1 ≤r1 u, accordingly,
x̄ ≤ z̄. ¤

Corollary 13. Let x̄, ȳ, z̄ ∈ P such thatx̄ ≤ ȳ ≤ z̄. Then there exist an MV-
algebraAt and elements u, v, w ∈At such that u∈ x̄ , v ∈ ȳ, w ∈ z̄ and u≤t

v ≤t w.

It is evident that the MV-algebras pastingP is a partially ordered set with the
greatest element1At (we shall denote it by 1P ) and the least element0Ai (we shall
denote it by 0P ).

Now we shall define a partial binary operationª on P as follows. Letx̄,
ȳ∈P such that̄x ≤ ȳ. Then there exist an MV-algebraAt and elementsu, v ∈ At

such thatu ∈ x̄, v ∈ ȳ andu≤t v. We put

ȳª x̄ = v ªt u,

whereªt is a partial difference operation on the MV-algebraAt . It is easy to verify
thatª satisfies the axioms (D1) and (D2) of the difference operation. Now it is
visible that the following theorem is true.

Theorem 14. LetP be an MV-algebras pasting of an admissible systemS. Then
(P,≤, 1P , 0P ,ª) is a D-poset.
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Theorem 15. Let {A, B} be an admissible system of MV-algebras. Then the
MV-algebras pastingP = Ā ∪ B̄ is a D-lattice.

Proof: It is not difficult to prove thatĀ, B̄ andĀ ∩ B̄ are sub-MV-algebras ofP.
Let A ⊂ 〈A〉 andB ⊂ 〈B〉 such thatA ∼τ B.

(i) At first we assume thatA=∅ and B=∅. Then Ā ∩ B̄ = {0P , 1P}. If
x̄, ȳ ∈ P such thatx̄, ȳ ∈ Ā (or x̄, ȳ ∈ B̄) then x̄ ∨ ȳ ∈ Ā ⊂ P (or x̄ ∨
ȳ ∈ B̄ ⊂ P).

Let x̄ ∈ Ā \ B̄ and ȳ ∈ B̄ \ Ā. We prove that̄x ∨ ȳ = 1P . If w̄ ∈ P
such that̄x ≤ w̄ and ȳ ≤ w̄ then the first inequality gives ¯w ∈ Ā and the
second one ¯w ∈ B̄, therefore ¯w ∈ Ā ∩ B̄. Hencew̄ = 1P .

(ii) Let 〈A〉 = {a1, a2, . . . , am} be a set of all atoms ofA and
A={a1, a2, . . . , an} ⊂ 〈A〉, where n < m, and B={b1, b2, . . . , bn} ⊂
〈B〉= {b1, b2, . . . , bk}, wheren < k.

We put α1=
∨n

i=1 τ (ai )ai and β1=
∨n

i=1 τ (bi )bi . Let us denote by ¯α and xi

the equivalence classes such thatα1, β1 ∈ ᾱ andai , bi ∈ xi , for i = 1, 2,. . . , n.
Evidently, xi are atoms inĀ ∩ B̄ for i = 1, 2,. . . , n. We prove that〈Ā∩ B̄〉=
{x1, x2, . . . xn, ᾱ⊥} is the set of all atoms ofĀ ∩ B̄. Indeed, if there exists
xk ∈ Ā ∩ B̄ for some k∈ {1, 2,. . . , n} such thatxk ≤ ᾱ⊥, then ak≤A α⊥1 =∧n

i=1(τ (ai )ai )⊥ ≤A (τ (ak)ak)⊥, which contradicts the maximality of (τ (ak)ak).
Suppose that̄x ∈ Ā \ B̄, ȳ∈ B̄ \ Ā, u ∈ A andv ∈B such thatu∈ x̄ andv ∈ ȳ.

Then

u =
m∨

i=1

pi ai =
n∨

i=1

pi ai ∨
m∨

i=n+1

pi ai = u1 ∨ u2,

whereu1 ∈ Ā ∩ B̄ andu2 ∈ Ā \ B̄. Likewise

v =
k∨

i=1

qi bi =
n∨

i=1

qi bi ∨
k∨

i=n+1

qi bi = v1 ∨ v2,

wherev1 ∈ Ā ∩ B̄ andv2 ∈ B̄ \ Ā. Visibly u1 ∨ v1 ∈ Ā ∩ B̄.
Setz̄= u1 ∨ v1, α2 =

∨m
i=n+1 τ (ai )ai andβ2 =

∨k
i=n+1 τ (bi )bi . Because

1A =
m∨

i=1

τ (ai )ai = α1 ∨ α2 = α1⊕ α2,

we haveα2 = α⊥1 and alsoβ2 = β⊥1 . Furtheru2 ≤ α2 = α⊥1 andv2 ≤ β2 = β⊥1 ,
thence it followsu2 ≤ ᾱ⊥ andv2 ≤ ᾱ⊥. Thenz̄∨ ᾱ⊥ ∈ Ā ∩ B̄ andx̄ ≤ z̄∨ ᾱ⊥ as
well as ȳ ≤ z̄∨ ᾱ⊥.

Let w̄ ∈ P such that̄x ≤ w̄ andȳ ≤ w̄. Thenw̄ ∈ Ā ∩ B̄ and there arew1 ∈
A andw2 ∈ B such thatw1, w2 ∈ w̄. The inequalitȳx ≤ w̄ implies thatu ≤A w1
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and henceu1 ≤A w1. Analogicallyv1 ≤B w2, which givesu1 ≤ w̄ andv1 ≤ w̄,
so z̄= u1 ∨ v1 ≤ w̄.

Now we prove that ¯α⊥ ≤ w̄. Because

w̄ ∈ Ā ∩ B̄ and 〈Ā ∩ B̄〉 = {x1, x2, . . . , xn, ᾱ⊥
}

we get

w̄ =
(

n∨
i=1

ri x1

)
∨ r0ᾱ

⊥,

where 0≤ ri ≤ τ (x1) = τ (ai ) = τ (bi ) andr0 ∈ {0, 1}. If r0 = 0, then usingu2 ≤
w̄ we obtain

u2 = u2 ∧ ᾱ⊥ ≤ w̄ ∧ ᾱ⊥ =
(

n∨
i=1

ri x1

)
∧ ᾱ⊥

=
n∨

i=1

(
ri x1 ∧ ᾱ⊥

) = 0P ,

a controversy. Then ¯w ≥ ᾱ⊥, thusw̄ ≥ z̄∨ ᾱ⊥. We proved that̄x ∨ ȳ = z̄∨ ᾱ⊥
and soP is a D-lattice. ¤

The properties of an MV-algebras pasting depend on the choice of the equiv-
alent sets (with respect to isotropic indices) and on types of pasting MV-algebras.

Let S = {At : t ∈ T} be an admissible system of MV-algebras andAt ⊂
〈At 〉, As ⊂ 〈As〉 such thatAt = ∅ and As = ∅ for everys, t ∈ T . Then the MV-
algebras pastingP of the systemS is called the 0-1-pasting. Every MV-algebras
0-1-pasting is a D-lattice, especially, a Boolean algebras 0-1-pasting is an ortho-
modular lattice.

Theorem 16. LetS = {At : t ∈ T} be an admissible system of MV-algebras and
P =⋃t∈T At be an MV-algebras pasting. IfP is a lattice, thenĀt are blocks in
P for all t ∈ T .

Proof: We prove that everyĀt is the maximal compatible set inP.
Let z̄ ∈ P andz̄↔ x̄ for all x̄ ∈ Āt . Let us assume thatz 6∈ Āt . Then there

exists an MV-algebraĀs ∈ P such that̄z ∈ Ās \ Āt . We choosēx such that̄x ∈
Āt \ Ās. Let A ⊂ 〈At 〉 andB ⊂ 〈As〉 such thatA ∼τ B.

(i) If A = ∅ andB = ∅ thenĀt ∩ Ās = {0P , 1P}. It follows thatz̄∨ x̄ = 1P
and z̄∧ x̄ = 0P . The compatibility ofz̄ and x̄ gives (̄z∨ x̄)ª z̄= x̄ ª
(z̄∧ x̄), that is 1P ª z̄= x̄ ∈ Āt . This contradicts our assumption that
z̄ 6∈ Āt .
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(ii) Let A 6= ∅ anda0 ∈ 〈At 〉 \ A. Thena0 ∈ Āt \ Ās and by the assumption
we havēz↔ a0. Becausēz∧ a0 = 0P andz̄∨ a0 ∈ Āt ∩ Ās, we getz̄=
z̄ª z̄∧ a0 = (z̄∨ a0)ª a0 ∈ Āt , a contradiction.

We proved that the compatibilitȳz↔ x̄ for all x̄ ∈ Āt follows z̄ ∈ Āt , which
vindicates the maximality of̄At . ¤

There remains the open problem to establish the necessary and sufficient
conditions such that an MV-algebras pasting is a lattice.
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Dvurečenskij, A. and Pulmannov´a, S. (2000).New trends in Quantum Structures, Kluwer, Dordrecht,
The Netherlands.

Font, J. M., Rodr´ıgues, A. J., and Torrens, A. (1984).Wajsberg algebras. Stochastica8, 5–31.
Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics.Foundations of

Physics24, 1331–1352.
Giuntini, R. and Greuling, H. (1989). Toward a formal language for unsharp properties.Foundations

of Physics20, 931–945.
Greechie, R. (1971). Orthomodular lattices admitting no states.Journal of Combinatorial Theory10,

119–132.
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